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ABSTRACT

The Tau3P time-domain computational electromagnetics code is used at The Stanford Linear Accelerator Center for
a wide variety of accelerator design tasks. The code uses the Discrete Surface Integral method to solve Maxwell’s
equations on primal and dual hexahedral meshes. In this method run times are highly sensitive to mesh quality,
particularly to minimum edge-length, element skew, and lack of smoothness. In this study we investigate methods for
increasing Tau3P run times via mesh quality optimization. It is found that abort-time can be significantly increased
via optimization of the mesh condition number or by Laplacian smoothing.

Keywords: mesh quality, mesh optimization, mesh smoothing, computational electromagnetics

1. INTRODUCTION

The Stanford Linear Accelerator Center (SLAC) is de-
signing particle accelerators, in part, by performing
computer simulations using a code called Tau3P to
solve Maxwell’s Equations in the time domain. The
discretization algorithm used in Tau3P is the Discrete
Surface Integral (DSI) scheme [1]. The algorithm has
been proven to be conditionally stable for strictly or-
thogonal structured grids. The particle accelerator
hardware consists of waveguides and other parts form-
ing complex 3D geometrical configurations that are
impossible to mesh with strictly orthogonal structured
grids. Presently SLAC is using the CUBIT mesh gen-
eration code [2] to create unstructured hexahedral and
tetrahedral meshes which accurately represent the ge-
ometry but may lack the high quality of orthogonal
mapped meshes. No DSI stability condition has been
proven for these more general meshes. Empirically,
some simulations using these meshes exhibit unstable
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behavior, suggesting that the DSI scheme is not even
conditionally stable for the unstructured grids.

To work around this issue, a filtering technique [3] is
used in Tau3P which permits useful calculations to be
performed by delaying the onset of instability. With
this filter, most Tau3P calculations are able to com-
plete to the desired problem end-time. In some runs,
however, the numerical solution grows exponentially,
swamping the problem before the desired end-time is
reached. To avoid computing meaningless solutions,
Tau3P has a mechanism by which runs can be aborted
before the end-time is reached. A comparison is made
between the magnitude of the electric field vector at
selected points and a value determined automatically
given the problem. If the electric field vector exceeds
the supplied value then the results are most likely
non-physical, due to the unstable nature of the dis-
cretization algorithm. If this situation occurs, the run
is aborted. We define the abort-time of a run to be the
time (if any) at which the run is aborted.

It has long been observed that the abort-time encoun-
tered in many Tau3P simulations is sensitive to prop-
erties of the mesh. Much time has been spent tin-
kering with and regenerating meshes so that a given



simulation will not abort before the desired problem
end-time is reached. To reduce the time needed to cre-
ate an acceptable mesh, it would be helpful to know
precisely which mesh properties play a crucial role in
determining abort-time. An empirical investigation to
identify the strongest correlations between the abort-
time and various mesh properties [4] was conducted.
Having identified the crucial mesh properties, we seek
in this study to improve mesh quality with respect to
the crucial properties, resulting in calculations that
have a higher probability of running to completion.

2. MESH QUALITY METRICS

In the previous report [4], a series of meshes was stud-
ied to determine which quality metrics are most impor-
tant in affecting abort-time. The meshes were created
on a pillbox geometry (see Figure 1) that is represen-
tative of a simplified accelerator structure. Four cases
(PBU, PBF, PPU, and PPF) were considered, result-
ing from combinations of beam/pulse excitation and
unfiltered/filtered. To limit the number of cases to
a manageable number, the present study focuses on
just one of the four cases. The PPU case was selected
because results are easiest to interpret from a physical
viewpoint. The study showed that the most important
metrics were:

e Minimum primal edge size (MPES)." This is the
minimum edge length in the mesh, including
boundary edges. In general, this metric can range
from zero to infinity. For the pillbox geometry,
the approximate acceptable range of this metric is
MPES greater than 0.00040 meters (edge-lengths
smaller than that tend to result in relatively small
abort-times).

e Maximum primal condition number (MPCN).
This is the maximum quadrilateral element con-
dition number in the mesh. The quadrilateral
condition number is defined as the maximum con-
dition number at any of the four vertices of the
quadrilateral. The condition number at a vertex
is the sum of the squares of the two adjacent edge
lengths, divided by twice the area. This metric
ranges from one to infinity. The approximate ac-
ceptable range is between 1.0 and 2.0, with 1.0
being ideal. MPCN larger than 2.0 tends to cause
relatively small abort-times.

LMPES is not a scaled metric, but an absolute number.
Because the comparisons we make are always on the same
model, scaling is not an issue for the results presented in
this paper We recognize that it could be a problem if we
were to try to make comparisons across geometric models.
We have devised a number of scaled metrics to supplant
MPES, but our studies to date have not found them as
useful.
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Figure 1: A typical hexehedral mesh of the pillbox ge-
ometry.

e Maximum primal smoothness metric (MPSM).
Let Ay be the area of the k-th quadrilateral el-
ement in the cross-section of the mesh. Let ele-
ment j share an edge with element k. Let

s . Ar — A
k= Ak +Aj
ty = maxsjk

J
MPSM = mazx(ty)/t

where t is the average value of t; over the en-
tire mesh. This metric is effective in detecting
jumps in area between adjacent quadrilaterals. If
element k is on the boundary, it is not included
in the calculation. This metric is only meaning-
ful provided the elements areas are all positive.
This metric ranges from zero to infinity, with an
approximate acceptable range between zero and
5.0. When MPSM exceeds 5.0, abort-times tend
to be relatively small.

e Maximum primal scaled Jacobian (MPSJ). This
is the maximum sine of the angles in the mesh.
The metric ranges from -1.0 to +1.0, with an ap-
proximate acceptable range of 0.40 to 1.0. When
MPSJ is less than 0.40, abort-times tend to be
relatively small.

These metrics reflect some of the basic properties of
geometric mesh quality: size, smoothness, angle, and
aspect ratio. Many other metrics which measure these
generic properties are also correlated with abort-time
and thus could have been used in this study.

The previous study [4] established the importance
of these metrics by generating a set of 25 pillbox
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Figure 2: Scatter plots for MPCN-2D metric

meshes and determining an abort-time for each of the
meshes. For each of the 25 meshes one may calculate
various mesh quality metric values. Each metric
value can, in turn, be paired with the abort-time
for the given mesh to create a scatter plot. If a
given metric is a poor predictor of abort-time, the
scatter plot will show no pattern. On the other
hand, a strong predictor of abort-time will show a
distinctive 'L’ pattern. Figure 2 shows the scatter
plot obtained for the Maximum Primal Condition
Number metric. This metric exhibits the 'L’ pattern:
if the mesh has good quality (small condition number
values) then the abort-time is independent of the
metric (horizontal branch of the 'L’). In that case,
the abort-time is determined in conjunction with
other mesh quality metrics. If the mesh has poor
quality (large condition numbers), the points in the
scatter plot lie on the vertical branch of the 'L’. This
indicates that the abort-time is relatively small and
that this is likely due to mesh elements having poor
shape quality (large condition number). If a metric
exhibits a strong 'L’ pattern in its scatter plot, one
can define an acceptable range for the metric, namely,
the set of values for which abort-time is independent
of the metric. In the case of the MPCN scatter plot,
for example, the acceptable range is approximately
between 1 and 2.

The present situation for Tau3P meshing is iterative:

e Generate a mesh for a given geometry,
e Perform a Tau3P run,

e If the run aborts (prematurely), generate a new
mesh and return to previous step.

e If the run does not abort prematurely, halt.

Such a procedure is clearly expensive in terms of the
number of man-hours that potentially may be devoted
to a given meshing problem because both the meshing
step and the Tau3P calculation are within the iterative
loop. Smoothing is one way of producing another mesh
for the iterative procedure. Our results will show that
smoothing often produces a mesh which increases the
abort-time, thus increasing the likelihood that the it-
eration will halt. However, to further reduce the time
spent in meshing, the following modified iteration is
proposed:

e Generate a mesh for a given geometry,
e Calculate the quality metrics (MPES, etc),

e If any metric lies outside the acceptable range,
improve the mesh in various ways until the met-
rics are acceptable,

e Perform a Tau3P run, halt the procedure

In this approach, the iteration loop does not include
Tau3P, so the iteration proceeds much faster than the
previous iterative scheme. If one’s best mesh still re-
sults in a pre-maturely aborted Tau3P run, one should
probably not continue to search for better meshes be-
cause one has already used the best mesh.

The goal of the present and future investigations is
to find ways to improve Tau3P abort-time on the
PPU (Pulse Pillbox Unfiltered) and, later, the other
cases by modifying the meshes to improve the vari-
ous mesh quality metrics. In doing so, it is believed
that a methodology will be developed that can be ap-
plied to more realistic meshing problems that com-
monly arise in the modeling and simulation of accel-
erators. Our tools for improving the abort-time are
smoothing (node repositioning), edge biasing, interval
assignment, remeshing of certain regions, and insert-
ing prisms. In this paper we confine our activities to
smoothing.

3. SMOOTHING STRATEGY

A typical 3D pillbox mesh (See Figure 1) consists of
hexahedral elements. The hexahedral mesh is gener-
ated by first creating quadrilateral meshes on the beam
cross-section (a quarter circle) and on the collar cross-
section (a quarter annulus). These meshes are ’ swept’
along the beam axis to create hexahedra.

We limited our attention in this study to sixteen
2D beam cross-section meshes. The previous study
showed that these cross-sections cover the full range
of Tau3P abort-times. QC2 is our ’best’ mesh in that,



without smoothing, it resulted in the largest abort-
time. QC3 is our ’worst’ mesh, having a singularity
on the boundary. ? The abort-time for QC3 is several
orders of magnitude smaller than the other meshes.
Four representative cross-section meshes are shown in
Figure 3.

Our approach to smoothing of the pillbox mesh
has potentially two stages: (1) smooth the beam
cross-section mesh consisting of quadrilateral elements
(nodes on the bounding curves of the cross-section
are held fixed), and (2) smooth the hexahedral mesh
(holding nodes on the bounding surfaces fixed).

We do not smooth the collar cross-section mesh (see
Figure 4) since it would be difficult to improve the
quality obtained on that surface (the meshes are
smooth and nearly orthogonal). For the same reason,
we do not attempt to improve the quality of any of
the linking surface meshes. Finally, since the 3D mesh
is a simple translation of the 2D cross-section meshes,
there is little to be gained by smoothing the hexahedral
mesh as in Step 2 above. For more general geometries,
the choice of which surfaces to smooth would have to
be considered on a case by case basis. > This issue
will be explored in future work.

In the original study there were sixteen quadrilateral
meshes generated on the beam (quarter-circle) cross-
section. For each such cross-section, there are two
meshes of interest in this study which we denote by
the following types:

e Type UU. Neither the quadrilateral nor the hex-
ahedral meshes are smoothed,

e Type SU. The quadrilateral mesh on the beam
cross-section is smoothed, then swept to create
the hexahedral mesh. The hexahedral mesh is
not smoothed.

4, SMOOTHING THE BEAM
CROSS-SECTION

In this section we compare Type UU meshes to Type
SU meshes to explore potential benefits of 2D mesh
smoothing to improve quality (and thus abort-time).
To create the smoothed SU meshes, we first try con-
dition number smoothing [5], as implemented in the
CUBIT code. This smoother minimizes the following

2That does not mean that there is an element with zero
area. Rather the underlying continuum map has a singu-
larity. No element in this mesh has zero area.

30n more complex geometries one may still wish to
smooth some or all of the surface meshes, thus 2D met-
rics remain relevant. On the other hand, 3D metrics are
clearly needed when one needs to smooth the volume.

Figure 3: Meshes in the cross-section of QC2, QC3, QC5
and QC11C.
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Figure 4: Typical collar mesh.

objective function by changing vertex positions:

F=Y Q) (1)

where

and ) ,
Lij + Li+1af (3)
245

This smoother is designed to improve element shape
(angles and aspect ratio) while avoiding inverted
elements. A relatively tight tolerance was used during
the optimization to ensure the SU meshes were close
to the minimum of F.

Rij =

A visual inspection of the SU meshes reveals little
difference between the unsmoothed and smoothed
meshes, so the latter are not shown to save space.
Differences are more apparent in the metric values.
The metrics in the original study, MPCN, MPSM, and
MPSJ, were calculated using only the quadrilateral
beam meshes. That is, they are 2D metrics. To
be more precise in this study, we re-label these
metrics MPCN-2D, MPSM-2D, and MPSJ-2D. The
MPES metric in the previous study was not a 2D
metric as it used information from the hexahedral
mesh. For consistency we’ve introduced a new 2D
metric, MPES-2D, which is computed using only
the quadrilateral beam mesh. An additional metric,
average primal condition number, APCN-2D, was
added to monitor changes in the average values of the
metrics to better understand the effect of condition
number smoothing on abort-time.

We give values of MPES-2D, MPCN-2D, MPSM-2D,
MPSJ-2D, and APCN-2D in Tables 1, 2, 3, 4, and

5 for both the initial unsmoothed (UU) meshes and
for the cross-section smoothed (SU) meshes, along
with the percent increase or decrease in abort-time.
Table 6 gives the Tau3P abort-time for both the
unsmoothed and smoothed meshes.  Thirteen of
the sixteen cross-sections smoothed resulted in an
increased abort-time, a success rate of 81%! The
average increase in abort-time was 402% and in
several cases the abort-time increased an order of
magnitude via smoothing. Abort-time decreased due
to smoothing on three cross-sections, one, as much as
89.2%. We thus see that smoothing is potentially of
considerable use in improving Tau3P abort-times but
cannot be applied routinely.

To understand better what smoothing has wrought,
we present in Figure 5 plots of percent change in the
five metrics MPCN, MPSM, APCN, MPES and MPSJ
verses percent change in abort-time. Each line seg-
ment corresponds to a single run such as QC1. The
origin represents the UU position, while the other end
of each line segment is the SU position.

Looking first at the plot for APCN, one sees that
this metric value always decreases. This is because
the condition number objective function that we min-
imize serves as an upper bound to the average con-
dition number given by APCN. Next, consider the
plot for MPCN. The south-east (SE) quadrant of this
plot consists of those runs for which MPCN decreased
(i.e., the quality improved) while the actual abort-
time increased. Runs lying in the SE-quadrant thus
have abort-time predictions which are consistent with
abort-times achieved. Eight of the sixteen runs lie
in the SE quadrant. Similarly, the north-west (NW)
quadrant consists of runs for which MPCN increased
(i.e., the quality decreased) while the actual abort-
time decreased. Runs in the NW-quadrant have abort-
time predictions consistent with actual abort-times.
Only one run (QC3) lies in the NW-quadrant. Runs in
the NE and SW-quadrants have abort-time predictions
which are inconsistent with the actual abort-times
achieved. There were two runs in the SW-quadrant
and five runs in the NE-quadrant. Presumably, runs
in the SW and NE-quadrants appear inconsistent be-
cause other metrics are determining the actual abort-
time achieved. Plots for MPES and MPSJ show sim-
ilar results. QC10tbias stands out as highly unusual
in that while MPCN decreased modestly, abort-time
decreased considerably.

QC10tbias How can we explain the behavior of
QC10tbias (see Figure 6 for the UU and SU meshes)?
As the figure shows, the mesh consists of a near-
polar coordinate system in the outer regions of
the beam, combined with a triangle-primitive (three
block-structured submeshes) near the beam center.



Mesh MPES-2D
Type UU | Type SU | % Change

QC1 0.00090 0.00092 +2.2
QC2 0.00107 0.00105 -1.9
QC2b 0.00102 0.00103 +1.0
QC3 0.00175 0.00143 -18.3
QCH 0.00107 0.00118 +10.3
QC5b 0.00109 0.00109 +0.0
QC6 0.00070 0.00091 +30.0
QC7 0.00143 0.00101 -29.4
QC10t 0.00039 0.00037 -5.1
QC10p 0.00039 0.00047 +20.5
QC10c 0.00055 0.00067 +21.8
QC11 0.00079 0.00082 +3.8
QC11C 0.00060 0.00060 +0.0
QC12 0.00040 0.00086 +115
QC10tbias 0.00039 0.00032 -18.0
QCl11bias 0.00079 0.00087 +3.8

Mesh MPCN-2D
Type UU | Type SU | % Change

QC1 1.20 1.24 +3.3
QC2 1.38 1.28 -7.9
QC2b 1.38 1.21 -12.3
QC3 2.29 2.55 +11.4
QC5 1.30 1.25 4.6
QC5b 1.31 1.27 -3.1
QC6 1.88 1.32 20.8
QC7 1.43 1.26 -11.9
QC10t 1.53 1.55 +1.3
QC10p 3.49 3.49 +0.0
QC10c 1.41 1.46 +3.6
QC11 1.37 1.41 +2.9
QC11C 1.72 1.73 +0.6
QC12 1.64 1.49 -9.2
QC10tbias 1.53 1.52 -0.6
QCl11bias 1.81 1.79 -1.0

Table 1: MPES-2D Metric for cross-section condition
number smoothed meshes.

The UU and SU meshes are nearly indistinguishable
in the figure. Overlaying them directly on top of one
another shows that the only visible difference in the
SU mesh shows smoothing has pulled in the azimuthal
lines somewhat closer to the beam center. Other pos-
sibly significant changes can be detected by looking at
the metrics. First, the worst angle in the mesh occurs
at the three-valent node. This angle remains virtu-
ally unchanged by smoothing and cannot account for
the change in abort-time. The MPES metric shows
that the minimum mesh edge-length was small in the
UU mesh and made smaller by smoothing, this change
might partly account for the decrease in abort-time.
The MPSM metrics shows the SU mesh is smoother
than the UU mesh (in terms of area transitions). This
should have helped increase the abort-time, but ev-
idently, this was insufficient to overcome other, ad-
verse changes in the mesh. The most likely explana-
tion for the decrease in abort-time is thus the decrease
in MPES, especially since this occurred near the beam
center, a critical region in which the solution is devel-
oped. In terms of developing a practical procedure for
increasing abort-time, it would be helpful if one could
know a priori that smoothing this mesh via condition
number would decrease the abort-time, but a great
deal of experience would be needed to have forseen
this result.

QC1l1bias We also examine QCllbias to determine
why smoothing had a slightly adverse effect on the
abort-time. Figure 7 shows that the main change in
the smoothed mesh is the improvement in MPSJ which
occurs for one of the quadrilaterals in the paved por-
tion of the mesh. MPSM decreased 6.1% but this

Table 2: MPCN-2D Metrics for cross-section condition
number smoothed meshes.

does not seem sufficient to account for the decrease
in abort-time. Again, it is next to impossible to deter-
mine a priori from the metrics that condition number
smoothing would decrease the abort-time in this exam-
ple since the UU mesh has no obvious defect. Probably
what would have worked better in this case is to add
a few intervals along the biased curves to reduce the
aspect ratio and to improve the paved mesh quality.

In summary, the important points illustrated in this
section are, first, that condition number smoothing is
often successful in significantly increasing abort-time.
Second, our model of the relationship between
abort-time and certain quality metrics is generally
but not completely effective in predicting the effect
of a particular smoothing operation on abort-time.
This is seen by the preponderance of runs that fall in
the SE and NW-quadrants of our compass plots. It is
not known if our model could be made more effective
by including additional metrics or if some other
effect, such as relation of the mesh to the solution, is
clouding the picture.

5. LAPLACIAN SMOOTHING

To understand better whether or not the choice of
condition number smoothing is critical to increasing
abort-time, we smoothed the same sixteen cross sec-
tions using Cubit’s Laplacian smoother. We believe
this is a fair comparision because the QQC meshes have
good topology on a convex domain. Thus Laplacian
smoothing is not expected to invert any of the cells of
the mesh. In addition, it will tend to make the mesh
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Figure 7: The UU and SU meshes for QCl1bias

Mesh MPSM-2D
Type UU | Type SU | % Change

QC1 5.81 6.41 +10.3
QC2 4.35 4.17 -4.1
QC2b 4.05 3.84 -5.2
QC3 3.29 8.42 +156
QC5 5.40 4.30 -20.4
QC5b 5.43 5.33 -1.8
QC6 6.07 6.42 +5.8
QC7 6.38 3.49 -45.3
QC10t 9.23 4.25 -53.9
QC10p 10.2 5.05 -50.5
QC10c 8.27 4.67 -43.5
QC11 5.79 6.19 +6.9
QC11C 8.05 10.0 +24.2
QC12 7.47 6.15 -17.7
QC10tbias 5.80 4.83 -16.6
QCl11bias 6.11 6.21 -6.1

Table 3: MPSM-2D Metrics for cross-section condition
number smoothed meshes.

lines smoother. The basic question is does smoothing
of the mesh lines increase abort-time as effectively as
condition number smoothing?

We give values of MPES-2D, MPCN-2D, MPSM-2D,
MPSJ-2D, and APCN-2D in Tables 7, 8, 9, 10, and
11 for both the initial unsmoothed (UU) meshes
and for the cross-section Laplacian-smoothed (SU)
meshes, along with the percent increase or decrease
in abort-time. Table 12 gives the Tau3P abort-time
for both the unsmoothed and smoothed meshes.
Thirteen of the sixteen cross- sections smoothed
resulted in an increased abort-time, the same success
rate as was achieved by condition number smoothing.
The average increase in abort-time was 333% and
in several cases the abort-time increased an order of
magnitude via smoothing. Abort-time decreased due
to smoothing on three cross-sections, one, as much
as 61.7%. In six of sixteen cross-sections, Laplacian
smoothing was more effective than condition number
in increasing abort-time. We thus see that Laplacian
smoothing is potentially of considerable use in im-
proving Tau3P abort-times (at least when it does not
invert the mesh). As illustrated by Figure 9, meshes
which do not visually appear to have good quality
can, in fact, increase the abort-time (probably in this
case because more mesh nodes are concentrated in
the critical area of the beam).

In Figure 8, we use the same type of plots shown
in Figure 5 to examine the relationship between per-
centage change in MPCN, MPSM, APCN, MPES and
MPSJ and percentage change in abort-time. The plot
of APCN shows that most of the time the average con-



Mesh MPSJ-2D
Type UU | Type SU | % Change

QC1 0.836 0.809 -3.2
QC2 0.725 0.783 +8.0
QC2b 0.727 0.828 +13.9
QC3 0.039 0.039 +0.00
QCH 0.729 0.805 +10.4
QC5b 0.770 0.805 +4.6
QC6 0.706 0.760 +7.6
QC7 0.707 0.802 +13.4
QC10t 0.758 0.660 -12.9
QC10p 0.760 0.814 +7.1
QC10c 0.710 0.694 -2.3
QC11 0.737 0.708 -3.9
QC11C 0.679 0.608 -10.5
QC12 0.609 0.673 +10.5
QC10tbias 0.758 0.764 +0.8
QCl11bias 0.737 0.760 +14.5

Table 4: MPSJ-2D Metrics for cross-section condition
number smoothed meshes.

dition number decreases. The two runs, QC10p and
QCl11bias stand out as having an increase APCN. The
increase in QCl1bias is a modest +0.9% and can be
explained as due to the biasing along the sides of the
mesh. The increase in QC10p is fairly large compared
to most other runs and could be attributed to a high
amount of ’pulling’ towards the beam. The effect of
Laplacian smoothing on MPCN is seen to be mostly
random. We see again a small number of runs in the
SE and NW quadrants for MPCN. Also the most runs
occur in the NE quadrant for MPCN. For MPSM we
see runs in all four quadrants, but with most occuring
in the NE quadrant which is what we would expect.

6. CONCLUSION

In this study we smoothed sixteen pillbox cross-section
meshes. Two different smoothers were used: condi-
tion number and Laplacian. Both smoothers proved
generally effective in increasing the abort-time com-
pared to the unsmoothed meshes. Of the unsmoothed
meshes, QC2 had the largest abort-time (1.10e-06). Of
the smoothed meshes, QC5 with Laplacian smoothing
had the largest abort-time (1.36e-06). Thus smooth-
ing was able to improve on the overall best abort-time
achieved with no smoothing by 23.6%. This result
suggests that, on this simple model problem, one can
obtain good quality meshes even without smoothing.
In such cases, smoothing will result in only a small in-
crease in abort-time. In spite of this result we remain
confident that smoothing will be an important tool
in increasing abort-time in general because there are
much more difficult SLAC geometries to mesh than the
one selected for this study. This will be especially true
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Figure 8: Effect of Laplacian Smoothing on Abort-Time



Mesh UU Abort | SU Abort | % Change
QC1 2.30e-07 5.45e-07 +137.0
QC2 1.10e-06 1.21e-06 +10.0
QC2b 2.68e-07 9.26e-07 +245.5
QC3 2.62e-10 2.39e-10 -8.7
QC5 2.15e-07 9.57e-07 +345.1
QC5b 2.02e-07 8.30e-07 +310.9
QC6 2.96e-08 3.01e-07 +916.9
QC7 2.53e-08 3.16e-07 +1149
QC10t 2.00e-08 1.10e-07 +450.0
QC10p 1.48e-08 1.20e-07 +710.0
QC10c 2.71e-08 3.10e-07 +1044
QC11 8.93e-08 2.55e-07 +185.6
QC11C 2.84e-8 2.86e-07 +907.0
QC12 2.12e-07 4.90e-07 +131.1
QC10tbias 1.52e-07 1.64e-08 -89.2
QCl11bias 8.81e-08 7.63e-08 -13.4

Mesh APCN-2D
Type UU | Type SU | % Change

QC1 1.08 1.06 -1.8
QC2 1.02 1.02 +0.0
QC2b 1.02 1.02 +0.0
QC3 1.21 1.20 -1.0
QC5 1.02 1.02 +0.0
QC5b 1.02 1.02 +0.0
QC6 1.03 1.02 1.0
QC7 1.05 1.04 1.0
QC10t 1.25 1.24 -0.8
QC10p 2.05 2.00 24
QC10c 1.10 1.10 +0.0
QC11 1.07 1.07 +0.0
QC11C 1.06 1.04 -1.9
QC12 1.06 1.04 -1.9
QC10tbias 1.25 1.24 -0.8
QCl11bias 1.08 1.07 -0.9

Table 5: APCN-2D Metric for cross-section condition
number smoothed meshes.

when applied to 3D hex meshes. On difficult geome-
tries, the initial, unsmoothed mesh is likely to be of
relatively poor quality, perhaps more along the lines of
some of the less effective templates used in this study.
As this study shows, when the initial quality is rela-
tively poor, smoothing can result in considerable gains
in abort-time (300-400 percent on average and an or-
der of magnitude in some cases).

If one is going to smooth meshes to increase the abort-
time, it is natural to ask what smoother should be
used. As this paper shows, both condition num-
ber and Laplacian smoothing can be effective. Both
smoothers increased the UU abort-time for a given
topology around 80% of the time. Condition num-
ber smoothing increased the abort-time an average of
400% while Laplacian smoothing increased the abort-
time an average of 333%. The abort-time achieved
with condition number was better than the abort-
time achieved with Laplacian smoothing in 60% of
the cases. On the other hand, Laplacian smooth-
ing gave the largest abort-time over all of the mesh
topologies (QC5). In one case (QCllbias), neither
condition number nor Laplacian smoothing was able
to improve the UU abort-time. Often, one can use
the metrics to predict which of the smoothed meshes
will give the larger abort-time. For example, in QC12,
the condition number-smoothed mesh clearly has bet-
ter quality than the Laplacian mesh: MPCN is 1.49
vs. 2.21, MPSM is 6.15 vs. 8.15, and MPSJ is 0.673
vs. 0.453, respectively. Indeed, the abort-time for
QC12 was almost six times longer for condition num-
ber than for Laplacian. In many cases, however, it is
much less clear from looking at the metrics, which of

Table 6: PPU Abort-times with percentage change for
cross-section condition number-smoothed meshes.

the two smoothing methods will give the larger abort-
time. For example, the abort-time for QC10tbias was
almost twenty times longer for Laplacian smoothing
than for Condition number, yet a comparison of their
metrics does not reveal anything particularly in favor
of Laplacian (except possibly MPSM). Unless there
is something obviously wrong with a given mesh, it
does not appear possible to reliably predict the abort-
time in advance using just metric values. This makes
achievement of our modified iteration procedure (de-
scribed in section 2) appear less attainable.

An obvious future line of inquiry would be to construct
a hybrid objective function which trades off various
aspects of mesh smoothness, edge-length, and element
shape in order to simulataneously improve as many
aspects of mesh quality as possible. This idea will be
explored using the MESQUITE software [6].

To make this work of practical value to the SLAC
meshing effort we will need to develop a methodol-
ogy for when to smooth, what to smooth, and to in-
corporate other mesh quality improvement techniques
such prism insertion. The methodology will be tested
on more difficult meshing problems that will require
investigation into 3D smoothing and mesh quality.
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Mesh MPES-2D
Type UU | Type SU | % Change

QC1 0.00090 0.00097 +7.8
QC2 0.00107 0.00116 +8.4
QC2b 0.00102 0.00109 +6.9
QC3 0.00175 0.00157 -10.3
QC5 0.00107 0.00119 +11.2
QC5b 0.00109 0.00114 +4.6
QC6 0.00070 0.00092 +31.4
QC7 0.00143 0.00091 -36.4
QC10t 0.00039 0.00029 -25.6
QC10p 0.00039 0.00036 -T.7
QC10c 0.00055 0.00065 +18.2
QC11 0.00079 0.00079 +0.0
QC11C 0.00060 0.00082 +36.7
QC12 0.00040 0.00096 +140
QC10tbias 0.00039 0.00029 -25.6
QCl11bias 0.00079 0.00079 +0.0

Table 7: MPES-2D Metric for cross-section Laplacian

smoothed meshes.

Mesh MPCN-2D
Type UU | Type SU | % Change

QC1 1.20 1.40 +16.7
QC2 1.38 1.38 +0.0
QC2b 1.38 1.37 0.7
QC3 2.29 2.55 4114
QC5 1.30 1.30 +0.0
QC5b 1.31 1.41 +7.6
QC6 1.88 1.21 -35.6
QC7 1.43 1.58 +10.5
QC10t 1.53 1.52 -0.6
QCl0p 3.49 3.62 +3.7
QC10c 1.41 1.29 -8.5
QC11 1.37 1.90 +38.7
QC11C 1.72 3.23 +87.8
QC12 1.64 2.21 +34.8
QC10tbias 1.53 1.59 +3.9
QCl11bias 1.81 2.15 +18.8

Table 8: MPCN-2D Metrics for cross-section Laplcian

smoothed meshes.




Table 9: MPSM-2D Metrics for cross-section Laplacian

smoothed meshes.

Mesh MPSM-2D Mesh APCN-2D
Type UU | Type SU | % Change Type UU | Type SU | % Change

QC1 5.81 6.83 +17.6 QC1 1.08 1.03 46
QC2 4.35 3.98 -8.5 QC2 1.02 1.02 +0.0
QC2b 4.05 3.69 -8.9 QC2b 1.02 1.02 +0.0
QC3 3.29 7.26 +121 QC3 1.21 1.21 +0.0
QG5 5.40 4.24 -21.5 QC5 1.02 1.02 +0.0
QC5b 5.43 5.34 -1.7 QC5b 1.02 1.02 +0.0
QC6 6.07 4.77 214 QC6 1.03 1.01 -1.9
QC7 6.38 5.05 -20.9 QC7 1.05 1.03 -1.9
QC10t 9.23 2.80 -69.7 QC10t 1.25 1.24 0.8
QC10p 10.2 4.62 -54.7 QC10p 2.05 2.20 +17.3
QC10c 8.27 3.53 -57.3 QC10c 1.10 1.06 -3.6
QC11 5.79 9.34 +61.3 QC11 1.07 1.07 +0.0
QC11C 8.05 10.9 +35.4 QC11C 1.06 1.03 2.8
QC12 7.47 8.15 +9.1 QC12 1.06 1.04 -1.9
QCl10tbias 5.80 2.78 -52.1 QC10tbias 1.25 1.25 +0.0
QCl1bias 6.11 8.54 +39.8 QC11bias 1.08 1.09 +0.9

Table 11: APCN-2D Metric for cross-section Laplacian
smoothed meshes.

Mesh MPSJ-2D
Type UU | Type SU | % Change Mesh UU Abort | SU Abort | % Change

QC1 0.836 0.716 4.4 QC1 2.30e-07 6.60e-07 +187
QC2 0.725 0.723 28 QC2 1.10e-06 4.21e-07 -61.7
QC2b 0.727 0.731 +5.5 QC2b 2.68e-07 4.26e-07 +59.0
QC3 0.039 0.039 +0.0 QC3 2.62e-10 2.62e-10 +0.0
QC5 0.729 0.772 +5.9 QC5h 2.15e-07 1.36e-06 +533
QC5b 0.770 0.712 75 QC5b 2.02e-07 5.58e-07 +176
QC6 0.706 0.837 +18.6 QC6 2.96e-08 2.14e-07 +623
QC7 0.707 0.670 5.9 QC7 2.53e-08 1.43e-07 +465
QC10t 0.758 0.660 12,9 QC10t 2.00e-08 2.03e-07 +915
QC10p 0.760 0.591 299.9 QC10p 1.48e-08 6.03e-08 +307
QC10c 0.710 0.804 +13.2 QC10c 2.71e-08 1.69e-07 +524
QCl11 0.737 0.526 298.6 QC11 8.93e-08 1.32e-07 +47.8
QC11C 0.679 0.310 54.3 QC11C 2.84e-8 4.60e-07 +1520
QC12 0.609 0.453 225.6 QC12 2.12e-07 8.36e-08 -60.6
QC10tbias 0.758 0.631 -16.8 QC10tbias 1.52e-07 3.07e-07 +102
QCl1bias 0.737 0.510 230.8 QCl1bias 8.81e-08 8.26e-08 -6.2

Table 12: PPU Abort-times with percentage change for

Table 10: MPSJ-2D Metrics for cross-section Laplacian . .
cross-section Laplacian-smoothed meshes.

smoothed meshes.



